
Fundamental Scheduling Procedures 

10.1 Relevance of Construction Schedules 

In addition to assigning dates to project activities, project scheduling is intended to 

match the resources of equipment, materials and labor with project work tasks over 

time. Good scheduling can eliminate problems due to production bottlenecks, facilitate 

the timely procurement of necessary materials, and otherwise insure the completion of a 

project as soon as possible. In contrast, poor scheduling can result in considerable waste 

as laborers and equipment wait for the availability of needed resources or the 

completion of preceding tasks. Delays in the completion of an entire project due to poor 

scheduling can also create havoc for owners who are eager to start using the constructed 

facilities.  

Attitudes toward the formal scheduling of projects are often extreme. Many owners 

require detailed construction schedules to be submitted by contractors as a means of 

monitoring the work progress. The actual work performed is commonly compared to the 

schedule to determine if construction is proceeding satisfactorily. After the completion 

of construction, similar comparisons between the planned schedule and the actual 

accomplishments may be performed to allocate the liability for project delays due to 

changes requested by the owner, worker strikes or other unforeseen circumstances.  

In contrast to these instances of reliance upon formal schedules, many field supervisors 

disdain and dislike formal scheduling procedures. In particular, the critical path method 

of scheduling is commonly required by owners and has been taught in universities for 

over two decades, but is often regarded in the field as irrelevant to actual operations and 

a time consuming distraction. The result is "seat-of-the-pants" scheduling that can be 

good or that can result in grossly inefficient schedules and poor productivity. 

Progressive construction firms use formal scheduling procedures whenever the 

complexity of work tasks is high and the coordination of different workers is required.  

Formal scheduling procedures have become much more common with the advent of 

personal computers on construction sites and easy-to-use software programs. Sharing 

schedule information via the Internet has also provided a greater incentive to use formal 

scheduling methods. Savvy construction supervisors often carry schedule and budget 

information around with wearable or handheld computers. As a result, the continued 

development of easy to use computer programs and improved methods of presenting 

schedules hav overcome the practical problems associated with formal scheduling 

mechanisms. But problems with the use of scheduling techniques will continue until 

managers understand their proper use and limitations.  

A basic distinction exists between resource oriented and time oriented scheduling 

techniques. For resource oriented scheduling, the focus is on using and scheduling 

particular resources in an effective fashion. For example, the project manager's main 

concern on a high-rise building site might be to insure that cranes are used effectively 

for moving materials; without effective scheduling in this case, delivery trucks might 

queue on the ground and workers wait for deliveries on upper floors. For time oriented 

scheduling, the emphasis is on determining the completion time of the project given the 

necessary precedence relationships among activities. Hybrid techniques for resource 



leveling or resource constrained scheduling in the presence of precedence relationships 

also exist. Most scheduling software is time-oriented, although virtually all of the 

programs have the capability to introduce resource constaints.  

This chapter will introduce the fundamentals of scheduling methods. Our discussion 

will generally assume that computer based scheduling programs will be applied. 

Consequently, the wide variety of manual or mechanical scheduling techniques will not 

be discussed in any detail. These manual methods are not as capable or as convenient as 

computer based scheduling. With the availability of these computer based scheduling 

programs, it is important for managers to understand the basic operations performed by 

scheduling programs. Moreover, even if formal methods are not applied in particular 

cases, the conceptual framework of formal scheduling methods provides a valuable 

reference for a manager. Accordingly, examples involving hand calculations will be 

provided throughout the chapter to facilitate understanding.  
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10.2 The Critical Path Method 

The most widely used scheduling technique is the critical path method (CPM) for 

scheduling, often referred to as critical path scheduling. This method calculates the 

minimum completion time for a project along with the possible start and finish times for 

the project activities. Indeed, many texts and managers regard critical path scheduling as 

the only usable and practical scheduling procedure. Computer programs and algorithms 

for critical path scheduling are widely available and can efficiently handle projects with 

thousands of activities.  

The critical path itself represents the set or sequence of predecessor/successor activities 

which will take the longest time to complete. The duration of the critical path is the sum 

of the activities' durations along the path. Thus, the critical path can be defined as the 

longest possible path through the "network" of project activities, as described in Chapter 

9. The duration of the critical path represents the minimum time required to complete a 

project. Any delays along the critical path would imply that additional time would be 

required to complete the project. 

There may be more than one critical path among all the project activities, so completion 

of the entire project could be delayed by delaying activities along any one of the critical 

paths. For example, a project consisting of two activities performed in parallel that each 

require three days would have each activity critical for a completion in three days.  

Formally, critical path scheduling assumes that a project has been divided into activities 

of fixed duration and well defined predecessor relationships. A predecessor relationship 

implies that one activity must come before another in the schedule. No resource 

constraints other than those implied by precedence relationships are recognized in the 

simplest form of critical path scheduling.  

To use critical path scheduling in practice, construction planners often represent a 

resource constraint by a precedence relation. A constraint is simply a restriction on the 

options available to a manager, and a resource constraint is a constraint deriving from 

the limited availability of some resource of equipment, material, space or labor. For 
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example, one of two activities requiring the same piece of equipment might be 

arbitrarily assumed to precede the other activity. This artificial precedence constraint 

insures that the two activities requiring the same resource will not be scheduled at the 

same time. Also, most critical path scheduling algorithms impose restrictions on the 

generality of the activity relationships or network geometries which are used. In 

essence, these restrictions imply that the construction plan can be represented by a 

network plan in which activities appear as nodes in a network, as in Figure 9-6. Nodes 

are numbered, and no two nodes can have the same number or designation. Two nodes 

are introduced to represent the start and completion of the project itself.  

The actual computer representation of the project schedule generally consists of a list of 

activities along with their associated durations, required resources and predecessor 

activities. Graphical network representations rather than a list are helpful for 

visualization of the plan and to insure that mathematical requirements are met. The 

actual input of the data to a computer program may be accomplished by filling in blanks 

on a screen menu, reading an existing datafile, or typing data directly to the program 

with identifiers for the type of information being provided.  

With an activity-on-branch network, dummy activities may be introduced for the 

purposes of providing unique activity designations and maintaining the correct sequence 

of activities. A dummy activity is assumed to have no time duration and can be 

graphically represented by a dashed line in a network. Several cases in which dummy 

activities are useful are illustrated in Fig. 10-1. In Fig. 10-1(a), the elimination of 

activity C would mean that both activities B and D would be identified as being 

between nodes 1 and 3. However, if a dummy activity X is introduced, as shown in part 

(b) of the figure, the unique designations for activity B (node 1 to 2) and D (node 1 to 3) 

will be preserved. Furthermore, if the problem in part (a) is changed so that activity E 

cannot start until both C and D are completed but that F can start after D alone is 

completed, the order in the new sequence can be indicated by the addition of a dummy 

activity Y, as shown in part (c). In general, dummy activities may be necessary to meet 

the requirements of specific computer scheduling algorithms, but it is important to limit 

the number of such dummy link insertions to the extent possible.  



 

 

 

Figure 10-1  Dummy Activities in a Project Network 

 

Many computer scheduling systems support only one network representation, either 

activity-on-branch or acitivity-on-node. A good project manager is familiar with either 

representation. 

Example 10-1: Formulating a network diagram  

Suppose that we wish to form an activity network for a seven-activity network with the 

following precedences:  

Activity Predecessors 



A 

B 

C 

D 

E 

F 

G 

--- 

--- 

A,B 

C 

C 

D 

D,E 

Forming an activity-on-branch network for this set of activities might begin be drawing 

activities A, B and C as shown in Figure 10-2(a). At this point, we note that two 

activities (A and B) lie between the same two event nodes; for clarity, we insert a 

dummy activity X and continue to place other activities as in Figure 10-2(b). Placing 

activity G in the figure presents a problem, however, since we wish both activity D and 

activity E to be predecessors. Inserting an additional dummy activity Y along with 

activity G completes the activity network, as shown in Figure 10-2(c). A comparable 

activity-on-node representation is shown in Figure 10-3, including project start and 

finish nodes. Note that dummy activities are not required for expressing precedence 

relationships in activity-on-node networks.  



 

 

 

Figure 10-2  An Activity-on-Branch Network for Critical Path Scheduling 

 

 

 

 

Figure 10-3  An Activity-on-Node Network for Critical Path Scheduling 
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10.3 Calculations for Critical Path Scheduling 

With the background provided by the previous sections, we can formulate the critical 

path scheduling mathematically. We shall present an algorithm or set of instructions for 

critical path scheduling assuming an activity-on-branch project network. We also 

assume that all precedences are of a finish-to-start nature, so that a succeeding activity 

cannot start until the completion of a preceding activity. In a later section, we present a 

comparable algorithm for activity-on-node representations with multiple precedence 

types.  

Suppose that our project network has n+1 nodes, the initial event being 0 and the last 

event being n. Let the time at which node events occur be x1, x2,...., xn, respectively. The 

start of the project at x0 will be defined as time 0. Nodal event times must be consistent 

with activity durations, so that an activity's successor node event time must be larger 

than an activity's predecessor node event time plus its duration. For an activity defined 

as starting from event i and ending at event j, this relationship can be expressed as the 

inequality constraint, xj xi + Dij where Dij is the duration of activity (i,j). This same 

expression can be written for every activity and must hold true in any feasible schedule. 

Mathematically, then, the critical path scheduling problem is to minimize the time of 

project completion (xn) subject to the constraints that each node completion event 

cannot occur until each of the predecessor activities have been completed: 

Minimize 

(10.1) 
 

subject to 

 
 

 
 

This is a linear programming problem since the objective value to be minimized and 

each of the constraints is a linear equation. [1] 

Rather than solving the critical path scheduling problem with a linear programming 

algorithm (such as the Simplex method), more efficient techniques are available that 

take advantage of the network structure of the problem. These solution methods are very 

efficient with respect to the required computations, so that very large networks can be 

treated even with personal computers. These methods also give some very useful 

information about possible activity schedules. The programs can compute the earliest 

and latest possible starting times for each activity which are consistent with completing 

the project in the shortest possible time. This calculation is of particular interest for 

activities which are not on the critical path (or paths), since these activities might be 

slightly delayed or re-scheduled over time as a manager desires without delaying the 

entire project.  
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An efficient solution process for critical path scheduling based upon node labeling is 

shown in Table 10-1. Three algorithms appear in the table. The event numbering 

algorithm numbers the nodes (or events) of the project such that the beginning event has 

a lower number than the ending event for each activity. Technically, this algorithm 

accomplishes a "topological sort" of the activities. The project start node is given 

number 0. As long as the project activities fulfill the conditions for an activity-on-

branch network, this type of numbering system is always possible. Some software 

packages for critical path scheduling do not have this numbering algorithm 

programmed, so that the construction project planners must insure that appropriate 

numbering is done.  

TABLE 10-1  Critical Path Scheduling Algorithms (Activity-on-Branch 

Representation) 

Event Numbering Algorithm 

Step 1: Give the starting event number 0. 

Step 2: Give the next number to any unnumbered event whose predecessor events 

     are each already numbered. 

Repeat Step 2 until all events are numbered. 

Earliest Event Time Algorithm 

Step 1: Let E(0) = 0. 

Step 2: For j = 1,2,3,...,n (where n is the last event), let 

     E(j) = maximum {E(i) + Dij} 

where the maximum is computed over all activities (i,j) that have j as the ending event. 

Latest Event Time Algorithm 

Step 1: Let L(n) equal the required completion time of the project. 

     Note: L(n) must equal or exceed E(n). 

Step 2: For i = n-1, n-2, ..., 0, let 

     L(i) = minimum {L(j) - Dij} 

where the minimum is computed over all activities (i,j) that have i as the starting event.  

 

The earliest event time algorithm computes the earliest possible time, E(i), at which 

each event, i, in the network can occur. Earliest event times are computed as the 

maximum of the earliest start times plus activity durations for each of the activities 

immediately preceding an event. The earliest start time for each activity (i,j) is equal to 

the earliest possible time for the preceding event E(i): 

(10.2) 

 

The earliest finish time of each activity (i,j) can be calculated by: 

(10.3) 

 



Activities are identified in this algorithm by the predecessor node (or event) i and the 

successor node j. The algorithm simply requires that each event in the network should 

be examined in turn beginning with the project start (node 0).  

The latest event time algorithm computes the latest possible time, L(j), at which each 

event j in the network can occur, given the desired completion time of the project, L(n) 

for the last event n. Usually, the desired completion time will be equal to the earliest 

possible completion time, so that E(n) = L(n) for the final node n. The procedure for 

finding the latest event time is analogous to that for the earliest event time except that 

the procedure begins with the final event and works backwards through the project 

activities. Thus, the earliest event time algorithm is often called a forward pass through 

the network, whereas the latest event time algorithm is the the backward pass through 

the network. The latest finish time consistent with completion of the project in the 

desired time frame of L(n) for each activity (i,j) is equal to the latest possible time L(j) 

for the succeeding event: 

(10.4) 

 

The latest start time of each activity (i,j) can be calculated by: 

(10.5) 

 

The earliest start and latest finish times for each event are useful pieces of information 

in developing a project schedule. Events which have equal earliest and latest times, E(i) 

= L(i), lie on the critical path or paths. An activity (i,j) is a critical activity if it satisfies 

all of the following conditions: 

(10.6) 

 

(10.7) 

 

(10.8) 

 

Hence, activities between critical events are also on a critical path as long as the 

activity's earliest start time equals its latest start time, ES(i,j) = LS(i,j). To avoid 

delaying the project, all the activities on a critical path should begin as soon as possible, 

so each critical activity (i,j) must be scheduled to begin at the earliest possible start 

time, E(i).  

Example 10-2: Critical path scheduling calculations 

Consider the network shown in Figure 10-4 in which the project start is given number 0. 

Then, the only event that has each predecessor numbered is the successor to activity A, 



so it receives number 1. After this, the only event that has each predecessor numbered is 

the successor to the two activities B and C, so it receives number 2. The other event 

numbers resulting from the algorithm are also shown in the figure. For this simple 

project network, each stage in the numbering process found only one possible event to 

number at any time. With more than one feasible event to number, the choice of which 

to number next is arbitrary. For example, if activity C did not exist in the project for 

Figure 10-4, the successor event for activity A or for activity B could have been 

numbered 1.  

 

 

 

Figure 10-4  A Nine-Activity Project Network 

 

Once the node numbers are established, a good aid for manual scheduling is to draw a 

small rectangle near each node with two possible entries. The left hand side would 

contain the earliest time the event could occur, whereas the right hand side would 

contain the latest time the event could occur without delaying the entire project. Figure 

10-5 illustrates a typical box. 

 

 

 

Figure 10-5  E(i) and L(i) Display for Hand Calculation of Critical Path for Activity-

on-Branch Representation 

 

TABLE 10-2  Precedence Relations and Durations for a Nine Activity Project Example 

Activity Description Predecessors Duration 

A 

B 

C 

D 

E 

Site clearing  

Removal of trees 

General excavation 

Grading general area 

Excavation for trenches 

--- 

--- 

A 

A 

B, C 

4 

3 

8 

7 

9 



F 

G 

H 

I 

Placing formwork and reinforcement for concrete 

Installing sewer lines 

Installing other utilities 

Pouring concrete 

B, C 

D, E 

D, E 

F, G 

12 

2 

5 

6 

 

For the network in Figure 10-4 with activity durations in Table 10-2, the earliest event 

time calculations proceed as follows:  

Step 1  E(0) = 0 

Step 2  

j = 1  E(1) = Max{E(0) + D01} = Max{ 0 + 4 } = 4 

j = 2  E(2) = Max{E(0) + D02; E(1) + D12} = Max{0 + 3; 4 + 8} = 12 

j = 3  E(3) = Max{E(1) + D13; E(2) + D23} = Max{4 + 7; 12 + 9} = 21 

j = 4  E(4) = Max{E(2) + D24; E(3) + D34} = Max{12 + 12; 21 + 2} = 24 

j = 5  E(5) = Max{E(3) + D35; E(4) + D45} = Max{21 + 5; 24 + 6} = 30 

Thus, the minimum time required to complete the project is 30 since E(5) = 30. In this 

case, each event had at most two predecessors.  

For the "backward pass," the latest event time calculations are:  

Step 1  L(5) = E(5) = 30 

Step 2  

j = 4  L(4) = Min {L(5) - D45} = Min {30 - 6} = 24 

j = 3  L(3) = Min {L(5) - D35; L(4) - D34} = Min {30 -5; 24 - 2} = 22 

j = 2  L(2) = Min {L(4) - D24; L(3) - D23} = Min {24 - 12; 22 - 9} = 12 

j = 1  L(1) = Min {L(3) - D13; L(2) - D12} = Min {22 - 7; 12 - 8} = 4 

j = 0  L(0) = Min {L(2) - D02; L(1) - D01} = Min {12 - 3; 4 - 4} = 0 

In this example, E(0) = L(0), E(1) = L(1), E(2) = L(2), E(4) = L(4),and E(5) = L(5). As 

a result, all nodes but node 3 are in the critical path. Activities on the critical path 

include A (0,1), C (1,2), F (2,4) and I (4,5) as shown in Table 10-3.  

TABLE 10-3  Identification of Activities on the Critical Path for a Nine-Activity 

Project 

Activity 

Duration 

Dij 

Earliest start time 

E(i)=ES(i,j) 

Latest finish time 

L(j)=LF(i,j) 

Latest start time 

LS(i,j) 

A (0,1) 

B (0,2) 

C (1,2) 

D (1,3) 

E (2,3) 

F (2,4) 

4 

3 

8 

7 

9 

12 

0* 

0 

4* 

4 

12 

12* 

4* 

12 

12* 

22 

22 

24* 

0 

9 

4 

15 

13 

12 



G (3,4) 

H (3,5) 

I (4,5) 

2 

5 

6 

21 

21 

24 

24 

30 

30* 

22 

25 

24 

*Activity on a critical path since E(i) + DiJ = L(j).  
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10.4 Activity Float and Schedules 

A number of different activity schedules can be developed from the critical path 

scheduling procedure described in the previous section. An earliest time schedule would 

be developed by starting each activity as soon as possible, at ES(i,j). Similarly, a latest 

time schedule would delay the start of each activity as long as possible but still finish 

the project in the minimum possible time. This late schedule can be developed by 

setting each activity's start time to LS(i,j).  

Activities that have different early and late start times (i.e., ES(i,j) < LS(i,j)) can be 

scheduled to start anytime between ES(i,j) and LS(i,j) as shown in Figure 10-6. The 

concept of float is to use part or all of this allowable range to schedule an activity 

without delaying the completion of the project. An activity that has the earliest time for 

its predecessor and successor nodes differing by more than its duration possesses a 

window in which it can be scheduled. That is, if E(i) + Dij < L(j), then some float is 

available in which to schedule this activity.  
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Figure 10-6  Illustration of Activity Float 

 

Float is a very valuable concept since it represents the scheduling flexibility or 

"maneuvering room" available to complete particular tasks. Activities on the critical 

path do not provide any flexibility for scheduling nor leeway in case of problems. For 

activities with some float, the actual starting time might be chosen to balance work 

loads over time, to correspond with material deliveries, or to improve the project's cash 

flow.  

Of course, if one activity is allowed to float or change in the schedule, then the amount 

of float available for other activities may decrease. Three separate categories of float are 

defined in critical path scheduling:  

1. Free float is the amount of delay which can be assigned to any one activity 

without delaying subsequent activities. The free float, FF(i,j), associated with 

activity (i,j) is:  

(10.9) 

 

2. Independent float is the amount of delay which can be assigned to any one 

activity without delaying subsequent activities or restricting the scheduling of 

preceding activities. Independent float, IF(i,j), for activity (i,j) is calculated as:  

(10.10) 

 

3. Total float is the maximum amount of delay which can be assigned to any 

activity without delaying the entire project. The total float, TF(i,j), for any 

activity (i,j) is calculated as:  

(10.11) 

 

Each of these "floats" indicates an amount of flexibility associated with an activity. In 

all cases, total float equals or exceeds free float, while independent float is always less 

than or equal to free float. Also, any activity on a critical path has all three values of 

float equal to zero. The converse of this statement is also true, so any activity which has 

zero total float can be recognized as being on a critical path.  

The various categories of activity float are illustrated in Figure 10-6 in which the 

activity is represented by a bar which can move back and forth in time depending upon 

its scheduling start. Three possible scheduled starts are shown, corresponding to the 



cases of starting each activity at the earliest event time, E(i), the latest activity start time 

LS(i,j), and at the latest event time L(i). The three categories of float can be found 

directly from this figure. Finally, a fourth bar is included in the figure to illustrate the 

possibility that an activity might start, be temporarily halted, and then re-start. In this 

case, the temporary halt was sufficiently short that it was less than the independent float 

time and thus would not interfere with other activities. Whether or not such work 

splitting is possible or economical depends upon the nature of the activity.  

As shown in Table 10-3, activity D(1,3) has free and independent floats of 10 for the 

project shown in Figure 10-4. Thus, the start of this activity could be scheduled anytime 

between time 4 and 14 after the project began without interfering with the schedule of 

other activities or with the earliest completion time of the project. As the total float of 

11 units indicates, the start of activity D could also be delayed until time 15, but this 

would require that the schedule of other activities be restricted. For example, starting 

activity D at time 15 would require that activity G would begin as soon as activity D 

was completed. However, if this schedule was maintained, the overall completion date 

of the project would not be changed.  

Example 10-3: Critical path for a fabrication project 

As another example of critical path scheduling, consider the seven activities associated 

with the fabrication of a steel component shown in Table 10-4. Figure 10-7 shows the 

network diagram associated with these seven activities. Note that an additional dummy 

activity X has been added to insure that the correct precedence relationships are 

maintained for activity E. A simple rule to observe is that if an activity has more than 

one immediate predecessor and another activity has at least one but not all of these 

predecessor activity as a predecessor, a dummy activity will be required to maintain 

precedence relationships. Thus, in the figure, activity E has activities B and C as 

predecessors, while activity D has only activity C as a predecessor. Hence, a dummy 

activity is required. Node numbers have also been added to this figure using the 

procedure outlined in Table 10-1. Note that the node numbers on nodes 1 and 2 could 

have been exchanged in this numbering process since after numbering node 0, either 

node 1 or node 2 could be numbered next.  

TABLE 10-4  Precedences and Durations for a Seven Activity Project 

Activity Description Predecessors Duration 

A 

B 

C 

D 

E 

F 

G 

Preliminary design 

Evaluation of design 

Contract negotiation 

Preparation of fabrication plant 

Final design 

Fabrication of Product 

Shipment of Product to owner 

--- 

A 

--- 

C 

B, C 

D, E 

F 

6 

1 

8 

5 

9 

12 

3 

 



 

 

 

Figure 10-7  Illustration of a Seven Activity Project Network 

 

The results of the earliest and latest event time algorithms (appearing in Table 10-1) are 

shown in Table 10-5. The minimum completion time for the project is 32 days. In this 

small project, all of the event nodes except node 1 are on the critical path. Table 10-6 

shows the earliest and latest start times for the various activities including the different 

categories of float. Activities C,E,F,G and the dummy activity X are seen to lie on the 

critical path.  

TABLE 10-5  Event Times for a Seven Activity Project 

Node Earliest Time E(i) Latest Time L(j) 

0 

1 

2 

3 

4 

5 

6 

0 

6 

8 

8 

17 

29 

32 

0 

7 

8 

8 

17 

29 

32 

 

TABLE 10-6  Earliest Start, Latest Start and Activity Floats for a Seven Activity 

Project 

Activity Earliest start time 

Latest start time 

ES(i,j) 

Free float 

LS(i,j) Independent float Total float 

A (0,1) 

B (1,3) 

C (0,2) 

D (2,4) 

E (3,4) 

F (4,5) 

G (5,6) 

X (2,3) 

0 

6 

0 

8 

8 

17 

29 

8 

1 

7 

0 

12 

8 

17 

29 

8 

0 

1 

0 

4 

0 

0 

0 

0 

0 

0 

0 

4 

0 

0 

0 

0 

1 

1 

0 

4 

0 

0 

0 

0 
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10.5 Presenting Project Schedules 

Communicating the project schedule is a vital ingredient in successful project 

management. A good presentation will greatly ease the manager's problem of 

understanding the multitude of activities and their inter-relationships. Moreover, 

numerous individuals and parties are involved in any project, and they have to 

understand their assignments. Graphical presentations of project schedules are 

particularly useful since it is much easier to comprehend a graphical display of 

numerous pieces of information than to sift through a large table of numbers. Early 

computer scheduling systems were particularly poor in this regard since they produced 

pages and pages of numbers without aids to the manager for understanding them. A 

short example appears in Tables 10-5 and 10-6; in practice, a project summary table 

would be much longer. It is extremely tedious to read a table of activity numbers, 

durations, schedule times, and floats and thereby gain an understanding and 

appreciation of a project schedule. In practice, producing diagrams manually has been a 

common prescription to the lack of automated drafting facilities. Indeed, it has been 

common to use computer programs to perform critical path scheduling and then to 

produce bar charts of detailed activity schedules and resource assignments manually. 

With the availability of computer graphics, the cost and effort of producing graphical 

presentations has been significantly reduced and the production of presentation aids can 

be automated.  

Network diagrams for projects have already been introduced. These diagrams provide a 

powerful visualization of the precedences and relationships among the various project 

activities. They are a basic means of communicating a project plan among the 

participating planners and project monitors. Project planning is often conducted by 

producing network representations of greater and greater refinement until the plan is 

satisfactory.  

A useful variation on project network diagrams is to draw a time-scaled network. The 

activity diagrams shown in the previous section were topological networks in that only 

the relationship between nodes and branches were of interest. The actual diagram could 

be distorted in any way desired as long as the connections between nodes were not 

changed. In time-scaled network diagrams, activities on the network are plotted on a 

horizontal axis measuring the time since project commencement. Figure 10-8 gives an 

example of a time-scaled activity-on-branch diagram for the nine activity project in 

Figure 10-4. In this time-scaled diagram, each node is shown at its earliest possible 

time. By looking over the horizontal axis, the time at which activity can begin can be 

observed. Obviously, this time scaled diagram is produced as a display after activities 

are initially scheduled by the critical path method.  
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Figure 10-8  Illustration of a Time Scaled Network Diagram with Nine Activities 

 

Another useful graphical representation tool is a bar or Gantt chart illustrating the 

scheduled time for each activity. The bar chart lists activities and shows their scheduled 

start, finish and duration. An illustrative bar chart for the nine activity project appearing 

in Figure 10-4 is shown in Figure 10-9. Activities are listed in the vertical axis of this 

figure, while time since project commencement is shown along the horizontal axis. 

During the course of monitoring a project, useful additions to the basic bar chart include 

a vertical line to indicate the current time plus small marks to indicate the current state 

of work on each activity. In Figure 10-9, a hypothetical project state after 4 periods is 

shown. The small "v" marks on each activity represent the current state of each activity.  



 

 

 

Figure 10-9  An Example Bar Chart for a Nine Activity Project 

 

Bar charts are particularly helpful for communicating the current state and schedule of 

activities on a project. As such, they have found wide acceptance as a project 

representation tool in the field. For planning purposes, bar charts are not as useful since 

they do not indicate the precedence relationships among activities. Thus, a planner must 

remember or record separately that a change in one activity's schedule may require 

changes to successor activities. There have been various schemes for mechanically 

linking activity bars to represent precedences, but it is now easier to use computer based 

tools to represent such relationships.  

Other graphical representations are also useful in project monitoring. Time and activity 

graphs are extremely useful in portraying the current status of a project as well as the 

existence of activity float. For example, Figure 10-10 shows two possible schedules for 

the nine activity project described in Table 9-1 and shown in the previous figures. The 

first schedule would occur if each activity was scheduled at its earliest start time, ES(i,j) 



consistent with completion of the project in the minimum possible time. With this 

schedule, Figure 10-10 shows the percent of project activity completed versus time. The 

second schedule in Figure 10-10 is based on latest possible start times for each activity, 

LS(i,j). The horizontal time difference between the two feasible schedules gives an 

indication of the extent of possible float. If the project goes according to plan, the actual 

percentage completion at different times should fall between these curves. In practice, a 

vertical axis representing cash expenditures rather than percent completed is often used 

in developing a project representation of this type. For this purpose, activity cost 

estimates are used in preparing a time versus completion graph. Separate "S-curves" 

may also be prepared for groups of activities on the same graph, such as separate curves 

for the design, procurement, foundation or particular sub-contractor activities.  

 

 

 

Figure 10-10  Example of Percentage Completion versus Time for Alternative 

Schedules with a Nine Activity Project 

 

Time versus completion curves are also useful in project monitoring. Not only the 

history of the project can be indicated, but the future possibilities for earliest and latest 

start times. For example, Figure 10-11 illustrates a project that is forty percent complete 

after eight days for the nine activity example. In this case, the project is well ahead of 

the original schedule; some activities were completed in less than their expected 



durations. The possible earliest and latest start time schedules from the current project 

status are also shown on the figure.  

 

 

 

Figure 10-11  Illustration of Actual Percentage Completion versus Time for a Nine 

Activity Project Underway 

 

Graphs of resource use over time are also of interest to project planners and managers. 

An example of resource use is shown in Figure 10-12 for the resource of total 

employment on the site of a project. This graph is prepared by summing the resource 

requirements for each activity at each time period for a particular project schedule. With 

limited resources of some kind, graphs of this type can indicate when the competition 

for a resource is too large to accommodate; in cases of this kind, resource constrained 

scheduling may be necessary as described in Section 10.9. Even without fixed resource 

constraints, a scheduler tries to avoid extreme fluctuations in the demand for labor or 

other resources since these fluctuations typically incur high costs for training, hiring, 

transportation, and management. Thus, a planner might alter a schedule through the use 

of available activity floats so as to level or smooth out the demand for resources. 

Resource graphs such as Figure 10-12 provide an invaluable indication of the potential 

trouble spots and the success that a scheduler has in avoiding them.  



 

 

 

Figure 10-12  Illustration of Resource Use over Time for a Nine Activity Project 

 

A common difficulty with project network diagrams is that too much information is 

available for easy presentation in a network. In a project with, say, five hundred 

activities, drawing activities so that they can be seen without a microscope requires a 

considerable expanse of paper. A large project might require the wall space in a room to 

include the entire diagram. On a computer display, a typical restriction is that less than 

twenty activities can be successfully displayed at the same time. The problem of 

displaying numerous activities becomes particularly acute when accessory information 

such as activity identifying numbers or phrases, durations and resources are added to the 

diagram.  

One practical solution to this representation problem is to define sets of activities that 

can be represented together as a single activity. That is, for display purposes, network 

diagrams can be produced in which one "activity" would represent a number of real sub-

activities. For example, an activity such as "foundation design" might be inserted in 

summary diagrams. In the actual project plan, this one activity could be sub-divided into 

numerous tasks with their own precedences, durations and other attributes. These sub-

groups are sometimes termed fragnets for fragments of the full network. The result of 

this organization is the possibility of producing diagrams that summarize the entire 

project as well as detailed representations of particular sets of activities. The hierarchy 

of diagrams can also be introduced to the production of reports so that summary reports 

for groups of activities can be produced. Thus, detailed representations of particular 

activities such as plumbing might be prepared with all other activities either omitted or 

summarized in larger, aggregate activity representations. The CSI/MASTERSPEC 

activity definition codes described in Chapter 9 provide a widely adopted example of a 



hierarchical organization of this type. Even if summary reports and diagrams are 

prepared, the actual scheduling would use detailed activity characteristics, of course.  

An example figure of a sub-network appears in Figure 10-13. Summary displays would 

include only a single node A to represent the set of activities in the sub-network. Note 

that precedence relationships shown in the master network would have to be interpreted 

with care since a particular precedence might be due to an activity that would not 

commence at the start of activity on the sub-network.  

 

 

 

Figure 10-13  Illustration of a Sub-Network in a Summary Diagram 

 

The use of graphical project representations is an important and extremely useful aid to 

planners and managers. Of course, detailed numerical reports may also be required to 

check the peculiarities of particular activities. But graphs and diagrams provide an 

invaluable means of rapidly communicating or understanding a project schedule. With 

computer based storage of basic project data, graphical output is readily obtainable and 

should be used whenever possible.  

Finally, the scheduling procedure described in Section 10.3 simply counted days from 

the initial starting point. Practical scheduling programs include a calendar conversion to 

provide calendar dates for scheduled work as well as the number of days from the 

initiation of the project. This conversion can be accomplished by establishing a one-to-

one correspondence between project dates and calendar dates. For example, project day 

2 would be May 4 if the project began at time 0 on May 2 and no holidays intervened. 

In this calendar conversion, weekends and holidays would be excluded from 

consideration for scheduling, although the planner might overrule this feature. Also, the 

number of work shifts or working hours in each day could be defined, to provide 

consistency with the time units used is estimating activity durations. Project reports and 

graphs would typically use actual calendar days.  



Back to top  

10.6 Critical Path Scheduling for Activity-on-Node and 

with Leads, Lags, and Windows 

Performing the critical path scheduling algorithm for activity-on-node representations is 

only a small variation from the activity-on-branch algorithm presented above. An 

example of the activity-on-node diagram for a seven activity network is shown in Figure 

10-3. Some addition terminology is needed to account for the time delay at a node 

associated with the task activity. Accordingly, we define: ES(i) as the earliest start time 

for activity (and node) i, EF(i) is the earliest finish time for activity (and node) i, LS(i) 

is the latest start and LF(i) is the latest finish time for activity (and node) i. Table 10-7 

shows the relevant calculations for the node numbering algorithm, the forward pass and 

the backward pass calculations. 

TABLE 10-7  Critical Path Scheduling Algorithms (Activity-on-Node Representation) 

Activity Numbering Algorithm 

Step 1: Give the starting activity number 0. 

Step 2: Give the next number to any unnumbered activity whose predecessor activities 

     are each already numbered. 

Repeat Step 2 until all activities are numbered. 

Forward Pass 

Step 1: Let E(0) = 0. 

Step 2: For j = 1,2,3,...,n (where n is the last activity), let 

     ES(j) = maximum {EF(i)} 

where the maximum is computed over all activities (i) that have j as their successor. 

Step 3: EF(j) = ES(j) + Dj 

Backward Pass 

Step 1: Let L(n) equal the required completion time of the project. 

     Note: L(n) must equal or exceed E(n). 

Step 2: For i = n-1, n-2, ..., 0, let 

     LF(i) = minimum {LS(j)} 

where the minimum is computed over all activities (j) that have i as their predecessor. 

Step 3: LS(i) = LF(i) - Di  

 

For manual application of the critical path algorithm shown in Table 10-7, it is helpful 

to draw a square of four entries, representing the ES(i), EF(i), LS(i) and LF (i) as shown 

in Figure 10-14. During the forward pass, the boxes for ES(i) and EF(i) are filled in. As 

an exercise for the reader, the seven activity network in Figure 10-3 can be scheduled. 

Results should be identical to those obtained for the activity-on-branch calculations. 
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Figure 10-14  ES, EF, LS and LF Display for Hand Calculation of Critical Path for 

Activity-on-Node Representation 

 

Building on the critical path scheduling calculations described in the previous sections, 

some additional capabilities are useful. Desirable extensions include the definition of 

allowable windows for activities and the introduction of more complicated precedence 

relationships among activities. For example, a planner may wish to have an activity of 

removing formwork from a new building component follow the concrete pour by some 

pre-defined lag period to allow setting. This delay would represent a required gap 

between the completion of a preceding activity and the start of a successor. The 

scheduling calculations to accommodate these complications will be described in this 

section. Again, the standard critical path scheduling assumptions of fixed activity 

durations and unlimited resource availability will be made here, although these 

assumptions will be relaxed in later sections.  

A capability of many scheduling programs is to incorporate types of activity 

interactions in addition to the straightforward predecessor finish to successor start 

constraint used in Section 10.3. Incorporation of additional categories of interactions is 

often called precedence diagramming. [2] For example, it may be the case that 

installing concrete forms in a foundation trench might begin a few hours after the start 

of the trench excavation. This would be an example of a start-to-start constraint with a 

lead: the start of the trench-excavation activity would lead the start of the concrete-

form-placement activity by a few hours. Eight separate categories of precedence 

constraints can be defined, representing greater than (leads) or less than (lags) time 

constraints for each of four different inter-activity relationships. These relationships are 

summarized in Table 10-8. Typical precedence relationships would be:  

 Direct or finish-to-start leads 
The successor activity cannot start until the preceding activity is complete by at 

least the prescribed lead time (FS). Thus, the start of a successor activity must 

exceed the finish of the preceding activity by at least FS.  

 Start-to-start leads 
The successor activity cannot start until work on the preceding activity has been 

underway by at least the prescribed lead time (SS).  

 Finish-to-finish leadss 
The successor activity must have at least FF periods of work remaining at the 

completion of the preceding activity.  

 Start-to-finish leads 
The successor activity must have at least SF periods of work remaining at the 

start of the preceding activity.  
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While the eight precedence relationships in Table 10-8 are all possible, the most 

common precedence relationship is the straightforward direct precedence between the 

finish of a preceding activity and the start of the successor activity with no required gap 

(so FS = 0).  

TABLE 10-8  Eight Possible Activity Precedence Relationships 

Relationship Explanation 

Finish-to-start Lead  Latest Finish of Predecessor Earliest Start of Successor + FS  

Finish-to-start Lag  Latest Finish of Predecessor Earliest Start of Successor + FS  

Start-to-start Lead Earliest Start of Predecessor Earliest Start of Successor + SS  

Start-to-start Lag  Earliest Start of Predecessor Earliest Start of Successor + SS  

Finish-to-finish Lead  Latest Finish of Predecessor Earliest Finish of Successor + FF  

Finish-to-finish Lag  Latest Finish of Predecessor Earliest Finish of Successor + FF  

Start-to-finish Lead  Earliest Start of Predecessor Earliest Finish of Successor + SF  

Start-to-finish Lag  Earliest Start of Predecessor Earliest Finish of Successor + SF  

 

The computations with these lead and lag constraints are somewhat more complicated 

variations on the basic calculations defined in Table 10-1 for critical path scheduling. 

For example, a start-to-start lead would modify the calculation of the earliest start time 

to consider whether or not the necessary lead constraint was met: 

(10.12) 

 

where SSij represents a start-to-start lead between activity (i,j) and any of the activities 

starting at event j.  

The possibility of interrupting or splitting activities into two work segments can be 

particularly important to insure feasible schedules in the case of numerous lead or lag 

constraints. With activity splitting, an activity is divided into two sub-activities with a 

possible gap or idle time between work on the two subactivities. The computations for 

scheduling treat each sub-activity separately after a split is made. Splitting is performed 

to reflect available scheduling flexibility or to allow the development of a feasible 

schedule. For example, splitting may permit scheduling the early finish of a successor 

activity at a date later than the earliest start of the successor plus its duration. In effect, 

the successor activity is split into two segments with the later segment scheduled to 

finish after a particular time. Most commonly, this occurs when a constraint involving 

the finish time of two activities determines the required finish time of the successor. 

When this situation occurs, it is advantageous to split the successor activity into two so 

the first part of the successor activity can start earlier but still finish in accordance with 

the applicable finish-to-finish constraint.  

Finally, the definition of activity windows can be extremely useful. An activity window 

defines a permissible period in which a particularly activity may be scheduled. To 



impose a window constraint, a planner could specify an earliest possible start time for 

an activity (WES) or a latest possible completion time (WLF). Latest possible starts 

(WLS) and earliest possible finishes (WEF) might also be imposed. In the extreme, a 

required start time might be insured by setting the earliest and latest window start times 

equal (WES = WLS). These window constraints would be in addition to the time 

constraints imposed by precedence relationships among the various project activities. 

Window constraints are particularly useful in enforcing milestone completion 

requirements on project activities. For example, a milestone activity may be defined 

with no duration but a latest possible completion time. Any activities preceding this 

milestone activity cannot be scheduled for completion after the milestone date. Window 

constraints are actually a special case of the other precedence constraints summarized 

above: windows are constraints in which the precedecessor activity is the project start. 

Thus, an earliest possible start time window (WES) is a start-to-start lead.  

One related issue is the selection of an appropriate network representation. Generally, 

the activity-on-branch representation will lead to a more compact diagram and is also 

consistent with other engineering network representations of structures or circuits. [3] 

For example, the nine activities shown in Figure 10-4 result in an activity-on-branch 

network with six nodes and nine branches. In contrast, the comparable activity-on-node 

network shown in Figure 9-6 has eleven nodes (with the addition of a node for project 

start and completion) and fifteen branches. The activity-on-node diagram is more 

complicated and more difficult to draw, particularly since branches must be drawn 

crossing one another. Despite this larger size, an important practical reason to select 

activity-on-node diagrams is that numerous types of precedence relationships are easier 

to represent in these diagrams. For example, different symbols might be used on each of 

the branches in Figure 9-6 to represent direct precedences, start-to-start precedences, 

start-to-finish precedences, etc. Alternatively, the beginning and end points of the 

precedence links can indicate the type of lead or lag precedence relationship. Another 

advantage of activity-on-node representations is that the introduction of dummy links as 

in Figure 10-1 is not required. Either representation can be used for the critical path 

scheduling computations described earlier. In the absence of lead and lag precedence 

relationships, it is more common to select the compact activity-on-branch diagram, 

although a unified model for this purpose is described in Chapter 11. Of course, one 

reason to pick activity-on-branch or activity-on-node representations is that particular 

computer scheduling programs available at a site are based on one representation or the 

other. Since both representations are in common use, project managers should be 

familiar with either network representation.  

Many commercially available computer scheduling programs include the necessary 

computational procedures to incorporate windows and many of the various precedence 

relationships described above. Indeed, the term "precedence diagramming" and the 

calculations associated with these lags seems to have first appeared in the user's manual 

for a computer scheduling program. [4] 

If the construction plan suggests that such complicated lags are important, then these 

scheduling algorithms should be adopted. In the next section, the various computations 

associated with critical path scheduling with several types of leads, lags and windows 

are presented.  
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10.7 Calculations for Scheduling with Leads, Lags and 

Windows 

Table 10-9 contains an algorithmic description of the calculations required for critical 

path scheduling with leads, lags and windows. This description assumes an activity-on-

node project network representation, since this representation is much easier to use with 

complicated precedence relationships. The possible precedence relationships 

accomadated by the procedure contained in Table 10-9 are finish-to-start leads, start-to-

start leads, finish-to-finish lags and start-to-finish lags. Windows for earliest starts or 

latest finishes are also accomodated. Incorporating other precedence and window types 

in a scheduling procedure is also possible as described in Chapter 11. With an activity-

on-node representation, we assume that an initiation and a termination activity are 

included to mark the beginning and end of the project. The set of procedures described 

in Table 10-9 does not provide for automatic splitting of activities.  

TABLE 10-9  Critical Path Scheduling Algorithms with Leads, Lags and Windows 

(Activity-on-Node Representations) 

Activity Numbering Algorithm 

Step 1: Give the starting activity number 0. 

Step 2: Give the next number to any unnumbered activity whose predecessor activities 

     are each already numbered. 

Repeat Step 2 until all activities are numbered. 

Forward Pass Computations 

Step 0: Set the earliest start and the earliest finish of the initial activity to zero: 

     (ES(0) = EF(0) = 0). 

Repeat the following steps for each activity k = 0,1,2,...,m: 

Step 1: Compute the earliest start time (ES(k)) of activity k: 

     ES(k) = Maximum {0; WES(k) for the earliest start window time, 

     WEF(k) - D(k) for the earliest finish window time; 

     EF(i) + FS(i,k) for each preceding activity with a F-S constraint; 

     ES(i) + SS(i,k) for each preceding activity with a S-S constraint; 

     EF(i) + FF(i,k) - D(k) for each preceding activity with a F-F constraint; 

     ES(i) + SF(i,k) - D(k) for each preceding activity with a S-F constraint.} 

Step 2: Compute the earliest finish time EF(k) of activity k: 

     EF(k) = ES(k) + D(k).  

Backward Pass Computations 

Step 0: Set the latest finish and latest start of the terminal activity to the early start time: 

     LF(m) = LS(m) = ES(m) = EF(m) 

Repeat the following steps for each activity in reverse order, k = m-1,m-2,...,2,1,0: Step 

1: Compute the latest finish time for activity k: 

     LF(k) = Min{ LF(m), WLF(k) for the latest finish window time; 

     WLS(k) + D(k) for the latest start window time; 

     LS(j) - FS(k,j) for each succeeding activity with a F-S constraint; 

     LF(j) - FF(k,j) for each succeeding activity with a FF constraint; 

     LS(j) - SS(k,j) + D(k) for each succeeding activity with a SS constraint; 

     LF(j) - SF(k,j) + D(k) for each succeeding activity with a SF constraint.} 

Step 2: Compute the latest start time for activity k: 



     LS(k) = LF(k) - D(k) 

 

The first step in the scheduling algorithm is to sort activities such that no higher 

numbered activity precedes a lower numbered activity. With numbered activities, 

durations can be denoted D(k), where k is the number of an activity. Other activity 

information can also be referenced by the activity number. Note that node events used 

in activity-on-branch representations are not required in this case. 

The forward pass calculations compute an earliest start time (ES(k)) and an earliest 

finish time (EF(k)) for each activity in turn (Table 10-9). In computing the earliest start 

time of an activity k, the earliest start window time (WES), the earliest finish window 

time (WEF), and each of the various precedence relationships must be considered. 

Constraints on finish times are included by identifying minimum finish times and then 

subtracting the activity duration. A default earliest start time of day 0 is also insured for 

all activities. A second step in the procedure is to identify each activity's earliest finish 

time (EF(k)).  

The backward pass calculations proceed in a manner very similar to those of the 

forward pass (Table 10-9). In the backward pass, the latest finish and the latest start 

times for each activity are calculated. In computing the latest finish time, the latest start 

time is identified which is consistent with precedence constraints on an activity's 

starting time. This computation requires a minimization over applicable window times 

and all successor activities. A check for a feasible activity schedule can also be imposed 

at this point: if the late start time is less than the early start time (LS(k) < ES(k)), then 

the activity schedule is not possible.  

The result of the forward and backward pass calculations are the earliest start time, the 

latest start time, the earliest finish time, and the latest finish time for each activity. The 

activity float is computed as the latest start time less the earliest start time. Note that 

window constraints may be instrumental in setting the amount of float, so that activities 

without any float may either lie on the critical path or be constrained by an allowable 

window.  

To consider the possibility of activity splitting, the various formulas for the forward and 

backward passes in Table 10-9 must be modified. For example, in considering the 

possibility of activity splitting due to start-to-start lead (SS), it is important to ensure 

that the preceding activity has been underway for at least the required lead period. If the 

preceding activity was split and the first sub-activity was not underway for a sufficiently 

long period, then the following activity cannot start until the first plus the second sub-

activities have been underway for a period equal to SS(i,k). Thus, in setting the earliest 

start time for an activity, the calculation takes into account the duration of the first 

subactivity (DA(i)) for preceding activities involving a start-to-start lead. Algebraically, 

the term in the earliest start time calculation pertaining to start-to-start precedence 

constraints (ES(i) + SS(i,k)) has two parts with the possibility of activity splitting: 

(10.13) ES(i) + SS(i,k)  

(10.14) EF(i) - D(i) + SS(i,k) for split preceding activities with DA(i) < SS(i,k) 



where DA(i) is the duration of the first sub-activity of the preceding activity.  

The computation of earliest finish time involves similar considerations, except that the 

finish-to-finish and start-to-finish lag constraints are involved. In this case, a 

maximization over the following terms is required: 

(10.15) 

EF(k)  = Maximum{ES(k) + D(k), 

    EF(i) + FF(i,k) for each preceding activity with a FF precedence, 

    ES(i) + SF(i,k) for each preceding activity with a SF precedence 

and which is not split, 

    EF(i) - D(i) + SF(i,k) for each preceding activity with a SF 

precedence and which is split} 
 

Finally, the necessity to split an activity is also considered. If the earliest possible finish 

time is greater than the earliest start time plus the activity duration, then the activity 

must be split.  

Another possible extension of the scheduling computations in Table 10-9 would be to 

include a duration modification capability during the forward and backward passes. 

This capability would permit alternative work calendars for different activities or for 

modifications to reflect effects of time of the year on activity durations. For example, 

the duration of outside work during winter months would be increased. As another 

example, activities with weekend work permitted might have their weekday durations 

shortened to reflect weekend work accomplishments.  

Example 10-4: Impacts of precedence relationships and windows  

To illustrate the impacts of different precedence relationships, consider a project 

consisting of only two activities in addition to the start and finish. The start is numbered 

activity 0, the first activity is number 1, the second activity is number 2, and the finish is 

activity 3. Each activity is assumed to have a duration of five days. With a direct finish-

to-start precedence relationship without a lag, the critical path calculations reveal:  

ES(0) = 0 

ES(1) = 0 

EF(1) = ES(1) + D(1) = 0 + 5 = 5 

ES(2) = EF(1) + FS(1,2) = 5 + 0 = 5 

EF(2) = ES(2) + D(2) = 5 + 5 = 10 

ES(3) = EF(2) + FS(2,3) = 10 + 0 = 10 = EF(3) 

So the earliest project completion time is ten days.  

With a start-to-start precedence constraint with a two day lead, the scheduling 

calculations are:  

ES(0) = 0 

ES(1) = 0 

EF(1) = ES(1) + D(1) = 0 + 5 = 5 

ES(2) = ES(1) + SS(1,2) = 0 + 2 = 2 



EF(2) = ES(2) + D(2) = 2 + 5 = 7 

ES(3) = EF(2) + FS(2,3) = 7 + 0 = 7. 

In this case, activity 2 can begin two days after the start of activity 1 and proceed in 

parallel with activity 1. The result is that the project completion date drops from ten 

days to seven days.  

Finally, suppose that a finish-to-finish precedence relationship exists between activity 1 

and activity 2 with a two day lag. The scheduling calculations are:  

ES(0) = 0 = EF(0) 

ES(1) = EF(0) + FS(0,1) = 0 + 0 = 0 

EF(1) = ES(1) + D(1) = 0 + 5 = 5 

ES(2) = EF(1) + FF(1,2) - D(2) = 5 + 2 - 5 = 2 

EF(2) = ES(2) + D(2) = 2 + 5 = 7 

ES(3) = EF(2) + FS(2,3) = 7 + 0 = 7 = EF(3) 

In this case, the earliest finish for activity 2 is on day seven to allow the necessary two 

day lag from the completion of activity 1. The minimum project completion time is 

again seven days.  

Example 10-5: Scheduling in the presence of leads and windows.  

As a second example of the scheduling computations involved in the presence of leads, 

lags and windows, we shall perform the calculations required for the project shown in 

Figure 10-15. Start and end activities are included in the project diagram, making a total 

of eleven activities. The various windows and durations for the activities are 

summarized in Table 10-10 and the precedence relationships appear in Table 10-11. 

Only earliest start (WES) and latest finish (WLF) window constraints are included in 

this example problem. All four types of precedence relationships are included in this 

project. Note that two activities may have more than one type of precedence relationship 

at the same time; in this case, activities 2 and 5 have both S-S and F-F precedences. In 

Figure 10-15, the different precedence relationships are shown by links connecting the 

activity nodes. The type of precedence relationship is indicated by the beginning or end 

point of each arrow. For example, start-to-start precedences go from the left portion of 

the preceding activity to the left portion of the following activity. Application of the 

activity sorting algorithm (Table 10-9) reveals that the existing activity numbers are 

appropriate for the critical path algorithm. These activity numbers will be used in the 

forward and backward pass calculations.  



 

 

 

Figure 10-15  Example Project Network with Lead Precedences 

 

TABLE 10-10  Predecessors, Successors, Windows and Durations for an Example 

Project 

Activity 

Number Predecessors Successors 

Earliest Start 

Window 

Latest Finish 

Window 

Activity 

Duration 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

--- 

0 

0 

1 

0 

2, 2 

1, 3 

4, 5 

4, 5 

6, 7 

8, 9 

1, 2, 4 

3, 4, 6 

5 

6 

7, 8 

7, 8 

9 

9 

10 

10 

--- 

--- 

--- 

--- 

2 

--- 

--- 

6 

--- 

--- 

--- 

--- 

--- 

--- 

--- 

--- 

--- 

16 

16 

--- 

--- 

16 

--- 

0 

2 

5 

4 

3 

5 

6 

2 

4 

5 

0 

 

TABLE 10-11  Precedences in a Eleven Activity Project Example 

Predecessor Successor Type Lead 

0 

0 

0 

1 

1 

1 

2 

4 

3 

4 

FS 

FS 

FS 

SS 

SF 

0 

0 

0 

1 

1 



1 

2 

2 

3 

4 

4 

5 

5 

6 

7 

8 

9 

6 

5 

5 

6 

7 

8 

7 

8 

9 

9 

10 

10 

FS 

SS 

FF 

FS 

SS 

FS 

FS 

SS 

FF 

FS 

FS 

FS 

2 

2 

2 

0 

2 

0 

1 

3 

4 

0 

0 

0 

 

During the forward pass calculations (Table 10-9), the earliest start and earliest finish 

times are computed for each activity. The relevant calculations are:  

ES(0) = EF(0) = 0 

ES(1) = Max{0; EF(0) + FS(0,1)} = Max {0; 0 + 0} = 0. 

EF(1) = ES(1) + D(1) = 0 + 2 = 2 

ES(2) = Max{0; EF(0) + FS(0,1)} = Max{0; 0 + 0} = 0. 

EF(2) = ES(2) + D(2) = 0 + 5 = 5 

ES(3) = Max{0; WES(3); ES(1) + SS(1,3)} = Max{0; 2; 0 + 1} = 2. 

EF(3) = ES(3) + D(3) = 2 + 4 = 6 

Note that in the calculation of the earliest start for activity 3, the start was delayed to be 

consistent with the earliest start time window.  

ES(4) = Max{0; ES(0) + FS(0,1); ES(1) + SF(1,4) - D(4)} = Max{0; 0 + 0; 0+1-3} = 0. 

EF(4) = ES(4) + D(4) = 0 + 3 = 3 

ES(5) = Max{0; ES(2) + SS(2,5); EF(2) + FF(2,5) - D(5)} = Max{0; 0+2; 5+2-5} = 2 

EF(5) = ES(5) + D(5) = 2 + 5 = 7 

ES(6) = Max{0; WES(6); EF(1) + FS(1,6); EF(3) + FS(3,6)} = Max{0; 6; 2+2; 6+0} = 

6 

EF(6) = ES(6) + D(6) = 6 + 6 = 12 

ES(7) = Max{0; ES(4) + SS(4,7); EF(5) + FS(5,7)} = Max{0; 0+2; 7+1} = 8 

EF(7) = ES(7) + D(7) = 8 + 2 = 10 

ES(8) = Max{0; EF(4) + FS(4,8); ES(5) + SS(5,8)} = Max{0; 3+0; 2+3} = 5 

EF(8) = ES(8) + D(8) = 5 + 4 = 9 

ES(9) = Max{0; EF(7) + FS(7,9); EF(6) + FF(6,9) - D(9)} = Max{0; 10+0; 12+4-5} = 

11 

EF(9) = ES(9) + D(9) = 11 + 5 = 16 

ES(10) = Max{0; EF(8) + FS(8,10); EF(9) + FS(9,10)} = Max{0; 9+0; 16+0} = 16 

EF(10) = ES(10) + D(10) = 16 

As the result of these computations, the earliest project completion time is found to be 

16 days.  

The backward pass computations result in the latest finish and latest start times for each 

activity. These calculations are:  



LF(10) = LS(10) = ES(10) = EF(10) = 16 

LF(9) = Min{WLF(9); LF(10);LS(10) - FS(9,10)} = Min{16;16; 16-0} = 16 

LS(9) = LF(9) - D(9) = 16 - 5 = 11 

LF(8) = Min{LF(10); LS(10) - FS(8,10)} = Min{16; 16-0} = 16 

LS(8) = LF(8) - D(8) = 16 - 4 = 12 

LF(7) = Min{LF(10); LS(9) - FS(7,9)} = Min{16; 11-0} = 11 

LS(7) = LF(7) - D(7) = 11 - 2 = 9 

LF(6) = Min{LF(10); WLF(6); LF(9) - FF(6,9)} = Min{16; 16; 16-4} = 12 

LS(6) = LF(6) - D(6) = 12 - 6 = 6 

LF(5) = Min{LF(10); WLF(10); LS(7) - FS(5,7); LS(8) - SS(5,8) + D(8)} = Min{16; 

16; 9-1; 12-3+4} = 8 

LS(5) = LF(5) - D(5) = 8 - 5 = 3 

LF(4) = Min{LF(10); LS(8) - FS(4,8); LS(7) - SS(4,7) + D(7)} = Min{16; 12-0; 9-2+2} 

= 9 

LS(4) = LF(4) - D(4) = 9 - 3 = 6 

LF(3) = Min{LF(10); LS(6) - FS(3,6)} = Min{16; 6-0} = 6 

LS(3) = LF(3) - D(3) = 6 - 4 = 2 

LF(2) = Min{LF(10); LF(5) - FF(2,5); LS(5) - SS(2,5) + D(5)} = Min{16; 8-2; 3-2+5} 

= 6 

LS(2) = LF(2) - D(2) = 6 - 5 = 1 

LF(1) = Min{LF(10); LS(6) - FS(1,6); LS(3) - SS(1,3) + D(3); Lf(4) - SF(1,4) + D(4)} 

LS(1) = LF(1) - D(1) = 2 -2 = 0 

LF(0) = Min{LF(10); LS(1) - FS(0,1); LS(2) - FS(0,2); LS(4) - FS(0,4)} = Min{16; 0-0; 

1-0; 6-0} = 0 

LS(0) = LF(0) - D(0) = 0  

The earliest and latest start times for each of the activities are summarized in Table 10-

12. Activities without float are 0, 1, 6, 9 and 10. These activities also constitute the 

critical path in the project. Note that activities 6 and 9 are related by a finish-to-finish 

precedence with a 4 day lag. Decreasing this lag would result in a reduction in the 

overall project duration.  

TABLE 10-12  Summary of Activity Start and Finish Times for an Example Problem 

Activity Earliest Start Latest Start Float 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

0 

0 

0 

0 

0 

2 

6 

8 

5 

11 

16 

0 

0 

1 

2 

6 

3 

6 

9 

12 

11 

16 

0 

0 

1 

2 

6 

1 

0 

1 

7 

0 

0 
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10.8 Resource Oriented Scheduling 

Resource constrained scheduling should be applied whenever there are limited resources 

available for a project and the competition for these resources among the project 

activities is keen. In effect, delays are liable to occur in such cases as activities must 

wait until common resources become available. To the extent that resources are limited 

and demand for the resource is high, this waiting may be considerable. In turn, the 

congestion associated with these waits represents increased costs, poor productivity and, 

in the end, project delays. Schedules made without consideration for such bottlenecks 

can be completely unrealistic.  

Resource constrained scheduling is of particular importance in managing multiple 

projects with fixed resources of staff or equipment. For example, a design office has an 

identifiable staff which must be assigned to particular projects and design activities. 

When the workload is heavy, the designers may fall behind on completing their 

assignments. Government agencies are particularly prone to the problems of fixed 

staffing levels, although some flexibility in accomplishing tasks is possible through the 

mechanism of contracting work to outside firms. Construction activities are less 

susceptible to this type of problem since it is easier and less costly to hire additional 

personnel for the (relatively) short duration of a construction project. Overtime or 

double shift work also provide some flexibility.  

Resource oriented scheduling also is appropriate in cases in which unique resources are 

to be used. For example, scheduling excavation operations when one only excavator is 

available is simply a process of assigning work tasks or job segments on a day by day 

basis while insuring that appropriate precedence relationships are maintained. Even with 

more than one resource, this manual assignment process may be quite adequate. 

However, a planner should be careful to insure that necessary precedences are 

maintained.  

Resource constrained scheduling represents a considerable challenge and source of 

frustration to researchers in mathematics and operations research. While algorithms for 

optimal solution of the resource constrained problem exist, they are generally too 

computationally expensive to be practical for all but small networks (of less than about 

100 nodes). [5] The difficulty of the resource constrained project scheduling problem 

arises from the combinatorial explosion of different resource assignments which can be 

made and the fact that the decision variables are integer values representing all-or-

nothing assignments of a particular resource to a particular activity. In contrast, simple 

critical path scheduling deals with continuous time variables. Construction projects 

typically involve many activities, so optimal solution techniques for resource allocation 

are not practical.  

One possible simplification of the resource oriented scheduling problem is to ignore 

precedence relationships. In some applications, it may be impossible or unnecessary to 

consider precedence constraints among activities. In these cases, the focus of scheduling 

is usually on efficient utilization of project resources. To insure minimum cost and 

delay, a project manager attempts to minimize the amount of time that resources are 

unused and to minimize the waiting time for scarce resources. This resource oriented 

scheduling is often formalized as a problem of "job shop" scheduling in which 

numerous tasks are to be scheduled for completion and a variety of discrete resources 
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need to perform operations to complete the tasks. Reflecting the original orientation 

towards manufacturing applications, tasks are usually referred to as "jobs" and resources 

to be scheduled are designated "machines." In the provision of constructed facilities, an 

analogy would be an architectural/engineering design office in which numerous design 

related tasks are to be accomplished by individual professionals in different 

departments. The scheduling problem is to insure efficient use of the individual 

professionals (i.e. the resources) and to complete specific tasks in a timely manner.  

The simplest form of resource oriented scheduling is a reservation system for particular 

resources. In this case, competing activities or users of a resource pre-arrange use of the 

resource for a particular time period. Since the resource assignment is known in 

advance, other users of the resource can schedule their activities more effectively. The 

result is less waiting or "queuing" for a resource. It is also possible to inaugurate a 

preference system within the reservation process so that high-priority activities can be 

accomadated directly.  

In the more general case of multiple resources and specialized tasks, practical resource 

constrained scheduling procedures rely on heuristic procedures to develop good but not 

necessarily optimal schedules. While this is the occasion for considerable anguish 

among researchers, the heuristic methods will typically give fairly good results. An 

example heuristic method is provided in the next section. Manual methods in which a 

human scheduler revises a critical path schedule in light of resource constraints can also 

work relatively well. Given that much of the data and the network representation used in 

forming a project schedule are uncertain, the results of applying heuristic procedures 

may be quite adequate in practice.  

Example 10-6: A Reservation System [6]  

A recent construction project for a high-rise building complex in New York City was 

severely limited in the space available for staging materials for hauling up the building. 

On the four building site, thirty-eight separate cranes and elevators were available, but 

the number of movements of men, materials and equipment was expected to keep the 

equipment very busy. With numerous sub-contractors desiring the use of this 

equipment, the potential for delays and waiting in the limited staging area was 

considerable. By implementing a crane reservation system, these problems were nearly 

entirely avoided. The reservation system required contractors to telephone one or more 

days in advance to reserve time on a particular crane. Time were available on a first-

come, first-served basis (i.e. first call, first choice of available slots). Penalties were 

imposed for making an unused reservation. The reservation system was also 

computerized to permit rapid modification and updating of information as well as the 

provision of standard reservation schedules to be distributed to all participants.  

Example 10-7: Heuristic Resource Allocation  

Suppose that a project manager has eleven pipe sections for which necessary support 

structures and materials are available in a particular week. To work on these eleven pipe 

sections, five crews are available. The allocation problem is to assign the crews to the 

eleven pipe sections. This allocation would consist of a list of pipe sections allocated to 

each crew for work plus a recommendation on the appropriate sequence to undertake 

the work. The project manager might make assignments to minimize completion time, 
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to insure continuous work on the pipeline (so that one section on a pipeline run is not 

left incomplete), to reduce travel time between pipe sections, to avoid congestion among 

the different crews, and to balance the workload among the crews. Numerous trial 

solutions could be rapidly generated, especially with the aid of an electronic 

spreadsheet. For example, if the nine sections had estimated work durations for each of 

the fire crews as shown in Table 10-13, then the allocations shown in Figure 10-16 

would result in a minimum completion time.  

TABLE 10-13  Estimated Required Time for Each Work Task in a Resource Allocation 

Problem 

Section Work Duration 

A 

B 

C 

D 

E 

F 

G 

H 

I 

J 

K 

9 

9 

8 

8 

7 

7 

6 

6 

6 

5 

5 

 

 

 

 



Figure 10-16  Example Allocation of Crews to Work Tasks 

 

Example 10-8: Algorithms for Resource Allocation with Bottleneck Resources  

In the previous example, suppose that a mathematical model and solution was desired. 

For this purpose, we define a binary (i.e. 0 or 1 valued) decision variable for each pipe 

section and crew, xij, where xij = 1 implies that section i was assigned to crew j and xij = 

0 implied that section i was not assigned to crew j. The time required to complete each 

section is ti. The overall time to complete the nine sections is denoted z. In this case, the 

problem of minimizing overall completion time is:  

 
subject to the constraints:  

   for each section i 

  xij   is 0 or 1  

where the constraints simply insure that each section is assigned to one and only one 

crew. A modification permits a more conventional mathematical formulation, resulting 

in a generalized bottleneck assignment problem:  

Minimize z 

subject to the constraints:  

   for each crew j 

   for each section i 

  xij   is 0 or 1  

This problem can be solved as an integer programming problem, although at 

considerable computational expense. A common extension to this problem would occur 

with differential productivities for each crew, so that the time to complete an activity, tij, 

would be defined for each crew. Another modification to this problem would substitute 

a cost factor, cj, for the time factor, tj, and attempt to minimize overall costs rather than 

completion time.  

Back to top  

10.9 Scheduling with Resource Constraints and 

Precedences 
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The previous section outlined resource oriented approaches to the scheduling problem. 

In this section, we shall review some general approaches to integrating both concerns in 

scheduling.  

Two problems arise in developing a resource constrained project schedule. First, it is 

not necessarily the case that a critical path schedule is feasible. Because one or more 

resources might be needed by numerous activities, it can easily be the case that the 

shortest project duration identified by the critical path scheduling calculation is 

impossible. The difficulty arises because critical path scheduling assumes that no 

resource availability problems or bottlenecks will arise. Finding a feasible or possible 

schedule is the first problem in resource constrained scheduling. Of course, there may 

be a numerous possible schedules which conform with time and resource constraints. As 

a second problem, it is also desirable to determine schedules which have low costs or, 

ideally, the lowest cost.  

Numerous heuristic methods have been suggested for resource constrained scheduling. 

Many begin from critical path schedules which are modified in light of the resource 

constraints. Others begin in the opposite fashion by introducing resource constraints and 

then imposing precedence constraints on the activities. Still others begin with a ranking 

or classification of activities into priority groups for special attention in scheduling. [7] 

One type of heuristic may be better than another for different types of problems. 

Certainly, projects in which only an occasional resource constraint exists might be best 

scheduled starting from a critical path schedule. At the other extreme, projects with 

numerous important resource constraints might be best scheduled by considering critical 

resources first. A mixed approach would be to proceed simultaneously considering 

precedence and resource constraints.  

A simple modification to critical path scheduling has been shown to be effective for a 

number of scheduling problems and is simple to implement. For this heuristic 

procedure, critical path scheduling is applied initially. The result is the familiar set of 

possible early and late start times for each activity. Scheduling each activity to begin at 

its earliest possible start time may result in more than one activity requiring a particular 

resource at the same time. Hence, the initial schedule may not be feasible. The heuristic 

proceeds by identifying cases in which activities compete for a resource and selecting 

one activity to proceed. The start time of other activities are then shifted later in time. A 

simple rule for choosing which activity has priority is to select the activity with the 

earliest CPM late start time (calculated as LS(i,j) = L(j)-Dij) among those activities 

which are both feasible (in that all their precedence requirements are satisfied) and 

competing for the resource. This decision rule is applied from the start of the project 

until the end for each type of resource in turn.  

The order in which resources are considered in this scheduling process may influence 

the ultimate schedule. A good heuristic to employ in deciding the order in which 

resources are to be considered is to consider more important resources first. More 

important resources are those that have high costs or that are likely to represent an 

important bottleneck for project completion. Once important resources are scheduled, 

other resource allocations tend to be much easier. The resulting scheduling procedure is 

described in Table 10-14.  
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The late start time heuristic described in Table 10-14 is only one of many possible 

scheduling rules. It has the advantage of giving priority to activities which must start 

sooner to finish the project on time. However, it is myopic in that it doesn't consider 

trade-offs among resource types nor the changes in the late start time that will be 

occurring as activities are shifted later in time. More complicated rules can be devised 

to incorporate broader knowledge of the project schedule. These complicated rules 

require greater computational effort and may or may not result in scheduling 

improvements in the end.  

TABLE 10-14  A Resource-Oriented Scheduling Procedure 

Step 1:  

Rank all resources from the most important to the least 

important, and number the resources i = 1,2,3,...,m.  

Step 2:  

Set the scheduled start time for each activity to the earliest 

start time.  

For each resource i = 1,2,3,...,m in turn: 

Step 3:  

Start at the project beginning, so set t = 0.  

Step 4:  

Compute the demand for resource i at time t by summing up 

the requirements for resource i for all activities scheduled to 

be underway at time t.  

If demand for resource i in time t is greater than the resource 

availability, then select the activity with the greatest late start 

time requiring resource i at time t, and shift its scheduled start 

time to time t+1. 

Repeat Step 4 until the resource constraint at time t for 

resource i is satisfied. 

Step 5:  

Repeat step 4 for each project period in turn, setting t = t+1.  

 

Example 10-9: Resource constrained scheduling with nine activities.  

As an example of resource constrained scheduling, we shall re-examine the nine activity 

project discussed in Section 10.3. To begin with, suppose that four workers and two 

pieces of equipment such as backhoes are available for the project. The required 

resources for each of the nine project activities are summarized in Table 10-15. Graphs 

of resource requirements over the 30 day project duration are shown in Figure 10-17. 

Equipment availability in this schedule is not a problem. However, on two occasions, 

more than the four available workers are scheduled for work. Thus, the existing project 

schedule is infeasible and should be altered.  

TABLE 10-15  Resources Required and Starting Times for a Nine Activity Project 



Activity 

Workers 

Required 

Equipment 

Required 

Earliest Start 

Time 

Latest Start 

Time Duration 

A 

B 

C 

D 

E 

F 

G 

H 

I 

2 

2 

2 

2 

2 

2 

2 

2 

4 

0 

1 

1 

1 

1 

0 

1 

1 

1 

0 

0 

4 

4 

12 

12 

21 

21 

24 

0 

9 

4 

15 

13 

12 

22 

25 

24 

4 

3 

8 

7 

9 

12 

2 

5 

6 

 

 

 

 



Figure 10-17  Resources Required over Time for Nine Activity Project: Schedule I 

 

The first resource problem occurs on day 21 when activity F is underway and activities 

G and H are scheduled to start. Applying the latest start time heuristic to decide which 

activity should start, the manager should re-schedule activity H since it has a later value 

of LS(i,j), i.e., day 25 versus day 22 as seen in Table 10-15. Two workers become 

available on day 23 after the completion of activity G. Since activity H is the only 

activity which is feasible at that time, it is scheduled to begin. Two workers also 

become available on day 24 at the completion of activity F. At this point, activity I is 

available for starting. If possible, it would be scheduled to begin with only two workers 

until the completion of activity H on day 28. If all 4 workers were definitely required, 

then activity I would be scheduled to begin on day 28. In this latter case, the project 

duration would be 34 days, representing a 4 day increase due to the limited number of 

workers available.  

Example 10-10: Additional resource constraints.  

As another example, suppose that only one piece of equipment was available for the 

project. As seen in Figure 10-17, the original schedule would have to be significantly 

modified in this case. Application of the resource constrained scheduling heuristic 

proceeds as follows as applied to the original project schedule:  

1. On day 4, activities D and C are both scheduled to begin. Since activity D has a 

larger value of late start time, it should be re-scheduled.  

2. On day 12, activities D and E are available for starting. Again based on a later 

value of late start time (15 versus 13), activity D is deferred.  

3. On day 21, activity E is completed. At this point, activity D is the only feasible 

activity and it is scheduled for starting.  

4. On day 28, the planner can start either activity G or activity H. Based on the 

later start time heuristic, activity G is chosen to start.  

5. On completion of activity G at day 30, activity H is scheduled to begin.  

The resulting profile of resource use is shown in Figure 10-18. Note that activities F and 

I were not considered in applying the heuristic since these activities did not require the 

special equipment being considered. In the figure, activity I is scheduled after the 

completion of activity H due to the requirement of 4 workers for this activity. As a 

result, the project duration has increased to 41 days. During much of this time, all four 

workers are not assigned to an activity. At this point, a prudent planner would consider 

whether or not it would be cost effective to obtain an additional piece of equipment for 

the project.  



 

 

 

Figure 10-18  Resources Required over Time for Nine Activity Project: Schedule II 
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1 to 4.  

Construct an activity-on-branch network from the precedence relationships of 

activities in the project given in the table for the problem, Tables 10-16 to 10-19.  

TABLE 10-16   

Activity A B C D E F G H I J K L M N O 

Predecessors --- A A --- B C,D C,D D H F E,J F G,I G,I L,N 

Duration 6 7 1 14 5 8 9 3 5 3 4 12 6 2 7 
 

TABLE 10-17   

Activity A B C D E F G H I J K L M N 

Predecessors --- A B C D,G A F,J --- H I F,J H L K,M 

Duration 5 6 3 4 5 8 3 3 2 7 2 7 4 3 
 

TABLE 10-18   

Activity A B C D E F G H I J K L 

Predecessors --- --- --- A B C B,D C,E F F E,G,I H,J 

Duration 6 12 16 5 3 10 9 4 5 3 10 6 
 

TABLE 10-19   

Activity A B C D E F G H I J K L M 

Predecessors --- --- --- C C B,E A,F B,E B,E B,E D,J G,H I,K,L 

Duration 3 6 2 3 8 5 7 10 6 6 8 3 4 
 

5 to 8.  

Determine the critical path and all slacks for the projects in Tables 10-16 to 10-

19.  

9. Suppose that the precedence relationships for Problem 1 in Table 10-16 are all 

direct finish-to-start relationships with no lags except for the following:  

o B to E: S-S with a lag of 2.  

o D to H: F-F with a lag of 3.  

o F to L: S-S with a lag of 2.  

o G to N: S-S with a lag of 1.  

o G to M: S-S with a lag of 2.  

Formulate an activity-on-node network representation and recompute the critical 

path with these precedence relationships. 

10. Suppose that the precedence relationships for Problem 2 in Table 10-17 are all 

direct finish-to-start relationships with no lags except for the following:  

o C to D: S-S with a lag of 1  

o D to E: F-F with a lag of 3  

o A to F: S-S with a lag of 2  

o H to I: F-F with a lag of 4  

o L to M: S-S with a lag of 1  



Formulate an activity-on-node network representation and recompute the critical 

path with these precedence relationships.  

11 to 12.  

For the projects described in Tables 10-20 and 10-21, respectively, suggest a 

project schedule that would complete the project in minimum time and result in 

relatively constant or level requirements for labor over the course of the project.  

 

TABLE 10-20   

Activity A B C D E F G H I J K 

Predecessors --- --- --- A B B C C D,E F,G H 

Duration 3 5 1 1 7 6 4 3 6 4 3 

Workers Per Day 9 6 4 10 16 9 5 8 2 3 7 
 

TABLE 10-21   

Activity A B C D E F G H I J K L M N 

Predecessors --- --- --- A A A B B C F,G H,I,L F,G D,J E,K 

Duration 5 1 7 2 6 4 3 2 6 4 5 1 4 5 

Workers Per Day 0 3 0 9 5 4 2 14 10 4 1 2 7 3 
 

13. Develop a spreadsheet template that lists activity name, duration, required 

resources, earliest possible start, latest possible start, and scheduled start in 

separate columns for a maximum of twenty activities. By means of formulas, 

also develop the required resources for each day of the project, based on the 

activities' scheduled start, expected durations, and required resources. Use the 

spreadsheet graphics facility to plot the required resources over time. Use your 

template to solve Problems 11 and 12 by altering scheduled start times. (Hint: 

One way to prepare such a template is to use a column to represent a single day 

with each cell in the column indicating resources required by a particular activity 

on the particular day). 

14. Develop an example of a project network with three critical paths. 

15. For the project defined in Table 10-20, suppose that you are limited to a 

maximum of 20 workers at any given time. Determine a desirable schedule for 

the project, using the late start time heuristic described in Section 10.9. 

16. For the project defined in Table 10-21, suppose that you are limited to a 

maximum of 15 workers at any given time. Determine a desirable schedule for 

the project, using the late start time heuristic described in Section 10.9. 

17. The examples and problems presented in this chapter generally make use of 

activity duration and project durations as measured in working days from the 

beginning of the project. Outline the procedures by which time measured in 

working days would be converted into calendar days with single- or double-shift 

work. Could your procedure be modified to allow some but not all activities to 

be underway on weekends?  
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10.12 Footnotes 

1. See Au, T., Introduction to Systems Engineering, Deterministic Models, Addison-

Wesley Publishing Company, Reading, MA, 1973, for a detailed description of linear 

programming as a form of mathematical optimization. Back  

2. See K.C. Crandall, "Project Planning with Precedence Lead/Lag Factors," Project 

Management Quarterly, Vol. 4, No. 3, Sept. 1973, pp. 18-27, or J.J. Moder, C.R. 

Phillips, and E.W. Davis, Project Management with CPM, PERT and Precedence 

Diagramming, New York: Van Nostrand Reinhold Company, third edition, 1983, 

chapter 4. Back  

3. See C.T. Hendrickson and B.N. Janson, "A Common Network Formulation of 

Several Civil Engineering Problems," Civil Engineering Systems, Vol. 1, No. 4, 1984, 

pp. 195-203. Back  

4. See IBM, Project Management System, Application Description Manual, (H20-

0210), IBM, 1968. Back  

5. A variety of mathematical programming techniques have been proposed for this 

problem. For a review and comparison, see J.H. Patterson, "A Comparison of Exact 

Approaches for Solving the Multiple Constrained Resource Project Scheduling 

Problem," Management Science, Vol. 30, No. 7, 1984, pp. 854-867. Back  

6. This example is adapted from H. Smallowitz, "Construction by Computer," Civil 

Engineering, June, 1986, pp. 71-73. Back  

7. For discussions and comparisons of alternative heuristic algorithms, see E.M. Davies, 

"An experimental investigation of resource allocation in multiactivity projects," 

Operational Research Quarterly Vol. 24, No. 11, July 1976, pp. 1186-1194; J.D. Wiest 

and F.K. Levy, A Management Guide to PERT/CPM, Prentice-Hall, New Jersey, 1977; 

or S.R. Lawrence, A Computational Comparison of Heuristic Scheduling Techniques, 

Technical Report, Graduate School of Industrial Administration, Carnegie-Mellon 

University, 1985. Back  
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